首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   363篇
  免费   15篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   9篇
  2015年   16篇
  2014年   18篇
  2013年   17篇
  2012年   40篇
  2011年   27篇
  2010年   16篇
  2009年   16篇
  2008年   30篇
  2007年   23篇
  2006年   15篇
  2005年   30篇
  2004年   15篇
  2003年   13篇
  2002年   13篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1988年   1篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   3篇
  1964年   2篇
排序方式: 共有378条查询结果,搜索用时 15 毫秒
41.
42.
43.
Accurate and sensitive online detection tools would benefit both fundamental research and practical applications in aquatic microbiology. Here, we describe the development and testing of an online flow cytometer (FCM), with a specific use foreseen in the field of drinking water microbiology. The system incorporated fully automated sampling and fluorescent labeling of bacterial nucleic acids with analysis at 5-min intervals for periods in excess of 24 h. The laboratory scale testing showed sensitive detection (< 5% error) of bacteria over a broad concentration range (1 × 10(3) -1 × 10(6) cells mL(-1) ) and particularly the ability to track both gradual changes and dramatic events in water samples. The system was tested with bacterial pure cultures as well as indigenous microbial communities from natural water samples. Moreover, we demonstrated the possibility of using either a single fluorescent dye (e.g., SYBR Green I) or a combination of two dyes (SYBR Green I and Propidium Iodide), thus broadening the application possibilities of the system. The online FCM approach described herein has considerable potential for routine and continuous monitoring of drinking water, optimization of specific drinking water processes such as biofiltration or disinfection, as well as aquatic microbiology research in general.  相似文献   
44.
A new inhibitor, H-Ala-Ile-pyrrolidin-2-yl boronic acid, was developed as an inhibitor against prolyl tripeptidyl aminopeptidase with a Ki value of 88.1 nM. The structure of the prolyl tripeptidyl aminopeptidase complexed with the inhibitor (enzyme-inhibitor complex) was determined at 2.2 Å resolution. The inhibitor was bound to the active site through a covalent bond between Ser603 and the boron atom of the inhibitor. This structure should closely mimic the structure of the reaction intermediate between the enzyme and substrate. We previously proposed that two glutamate residues, Glu205 and Glu636, are involved in the recognition of substrates. In order to clarify the function of these glutamate residues in substrate recognition, three mutant enzymes, E205A, E205Q, and E636A were generated by site-directed mutagenesis. The E205A mutant was expressed as an inclusion body. The E205Q mutant was expressed in soluble form, but no activity was detected. Here, the structures of the E636A mutant and its complex with the inhibitor were determined. The inhibitor was located at almost the same position as in the wild-type enzyme-inhibitor complex. The amino group of the inhibitor interacted with Glu205 and the main-chain carbonyl group of Gln203. In addition, a water molecule in the place of Glu636 of the wild-type enzyme interacted with the amino group of the inhibitor. This water molecule was located near the position of Glu636 in the wild-type and formed a hydrogen bond with Gln203. The kcat/KM values of the E636A mutant toward the two substrates used were smaller than those of the wild-type by two orders of magnitude. The Ki value of our inhibitor for the E636A mutant was 48.8 μM, which was 554-fold higher than that against the wild-type enzyme. Consequently, it was concluded that Glu205 and Glu636 are significant residues for the N-terminal recognition of a substrate.  相似文献   
45.
Alterations in glucocorticoid (GC) metabolism may contribute to the development of obesity and insulin resistance. We aimed to study the role of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) in human adiposity, paying special attention to the association between altered GC metabolism and insulin sensitivity. In 24-h urine samples of 72 extremely obese (mean BMI 45.5 +/- 1.1 kg/m(2)), but otherwise healthy patients urinary free cortisol (UFF), urinary free cortisone (UFE), tetrahydrocortisol (THF), 5alpha-tetrahydrocortisol (5alpha-THF), and tetrahydrocortisone (THE) were quantified by radioimmunoassay. The sum of the three major tetrahydrometabolites is an estimate for daily GC secretion, and the sum of UFF and UFE represents potentially bioactive-free-GCs. Thirty healthy lean subjects (BMI 22.3 +/- 0.3 kg/m(2)) served as controls. In obese subjects, absolute daily GC secretion and the potentially bioactive-free-GCs were significantly (P < 0.005) higher than in lean controls (11.8 +/- 0.7 vs. 8.0 +/- 0.6 mg/d; and 171.8 +/- 11.2 vs. 117.6 +/- 9.2 mug/d, respectively). However, when these values were corrected for body surface area (BSA), significant differences were no longer detectable. While enzyme activity indices for 5alpha-reductase and 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) were similar in lean and obese subjects, 11beta-HSD2 was markedly elevated in adiposity (3.7 +/- 0.2 vs. 2.1 +/- 0.1; P < 0.0001). This increase was accompanied by a significant reduction in UFF excretion corrected for BSA (16.5 +/- 1.2 vs. 21.7 +/- 2.0 mug/d/m(2); P = 0.0222). Besides, 11beta-HSD2 activity was significantly correlated with insulin sensitivity (P = 0.0262). When body size is accounted for, both adrenal GC secretion and potentially bioactive-free-GCs are indistinguishable between lean and extremely obese subjects. However in obesity, the kidney appears to intensify its supply of the direct substrate cortisone for extrarenal 11beta-HSD1, which may fuel visceral adiposity and insulin resistance.  相似文献   
46.

Background

Very recently, a novel type 2 diabetes risk gene, i.e., MTNR1B, was identified and reported to affect fasting glycemia. Using our thoroughly phenotyped cohort of subjects at an increased risk for type 2 diabetes, we assessed the association of common genetic variation within the MTNR1B locus with obesity and prediabetes traits, namely impaired insulin secretion and insulin resistance.

Methodology/Principal Findings

We genotyped 1,578 non-diabetic subjects, metabolically characterized by oral glucose tolerance test, for five tagging single nucleotide polymorphisms (SNPs) covering 100% of common genetic variation (minor allele frequency >0.05) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638). In a subgroup (N = 513), insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp, and in a further subgroup (N = 301), glucose-stimulated insulin secretion was determined by intravenous glucose tolerance test. After appropriate adjustment for confounding variables and Bonferroni correction for multiple comparisons, none of the tagging SNPs was reliably associated with measures of adiposity. SNPs rs10830962, rs4753426, and rs10830963 were significantly associated with higher fasting plasma glucose concentrations (p<0.0001) and reduced OGTT- and IVGTT-induced insulin release (p≤0.0007 and p≤0.01, respectively). By contrast, SNP rs3781638 displayed significant association with lower fasting plasma glucose levels and increased OGTT-induced insulin release (p<0.0001 and p≤0.0002, respectively). Moreover, SNP rs3781638 revealed significant association with elevated fasting- and OGTT-derived insulin sensitivity (p≤0.0021). None of the MTNR1B tagging SNPs altered proinsulin-to-insulin conversion.

Conclusions/Significance

In conclusion, common genetic variation within MTNR1B determines glucose-stimulated insulin secretion and plasma glucose concentrations. Their impact on β-cell function might represent the prevailing pathomechanism how MTNR1B variants increase the type 2 diabetes risk.  相似文献   
47.
The improved syntheses of methyl 2-O-acetyl-3-O-benzyl-alpha-L-rhamnopyranoside (12) and 1,2-di-O-acetyl-3-O-benzyl-alpha-L-rhamnopyranose (15), which were used as glycosyl acceptor and donor, respectively, are described. Glycosylation of the O-4 position of both rhamnose derivatives with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl bromide (26) provided disaccharides 27 and 29. After partial deprotection of 27 and coupling of the resulting 28 with disaccharide 19, tetrasaccharide 31 was obtained. Furthermore, transforming of 29 into the corresponding bromide 30 and coupling with galacturonates 16 and 32 provided trisaccharides 33 and 34, respectively, which could be regarded as building blocks of ramified rhamnogalacturonan fragments. The preparation of tetra- (21) and hexasaccharide (25) of rhamnogalacturonan I is reported to demonstrate the feasibility of the synthesis of larger pectin fragments using the modular design principle with this type of building blocks.  相似文献   
48.
Cub domain containing protein 1 (CDCP1) is strongly expressed in tumors derived from lung, colon, ovary, or kidney. It is a membrane protein that is phosphorylated and then bound by Src family kinases. Although expression and phosphorylation of CDCP1 have been investigated in many tumor cell lines, the CDCP1 features responsible for transformation have not been fully evaluated. This is in part due to the lack of an experimental system in which cellular transformation depends on expression of exogenous CDCP1 and Src. Here we use retrovirus mediated co-overexpression of c-Src and CDCP1 to induce focus formation of NIH3T3 cells. Employing different mutants of CDCP1 we show that for a full transformation capacity, the intact amino- and carboxy-termini of CDCP1 are essential. Mutation of any of the core intracellular tyrosine residues (Y734, Y743, or Y762) abolished transformation, and mutation of a palmitoylation motif (C689,690G) strongly reduced it. Src kinase binding to CDCP1 was not required since Src with a defective SH2 domain generated even more CDCP1 dependent foci whereas Src myristoylation was necessary. Taken together, the focus formation assay allowed us to define structural requirements of CDCP1/Src dependent transformation and to characterize the interaction of CDCP1 and Src.  相似文献   
49.
In the course of gaining new insights into the secondary metabolite profile of various Stachybotrys strains, in particular concerning triprenyl phenol-like compounds, so far, unknown metabolites with analogous structural features were discovered. Three novel meroterpenoids containing a chromene ring moiety, namely stachybotrychromenes A–C, were isolated from solid culture of the filamentous fungus Stachybotrys chartarum DSMZ 12880 (chemotype S). Their structures were elucidated by means of comprehensive spectroscopic analysis (1D and 2D NMR, ESI-HRMS, and CD) as well as by comparison with spectroscopic data of structural analogues described in literature. Stachybotrychromenes A and B exhibited moderate cytotoxic effects on HepG2 cells after 24 h with corresponding IC50 values of 73.7 and 28.2 μM, respectively. Stachybotrychromene C showed no significant cytotoxic activity up to 100 μM. Moreover, it is noteworthy that stachybotrychromenes A–C are produced not only by S. chartarum chemotype S but also S. chartarum chemotype A and Stachybotrys chlorohalonata.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号